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Abstract 

Computing for the LHC, and for HEP more generally, is traditionally viewed as 
requiring specialized infrastructure and software environments, and therefore not 
compatible with the recent trend in “volunteer computing”, where volunteers supply 
free processing time on ordinary PCs and laptops via standard Internet connections. In 
this paper, we demonstrate that with the use of virtual machine technology, at least 
some standard LHC computing tasks can be tackled with volunteer computing 
resources. Specifically, by presenting volunteer computing resources to HEP scientists 
as a “volunteer cloud”, essentially identical to a Grid or dedicated cluster from a job 
submission perspective, LHC simulations can be processed effectively. This article 
outlines both the technical steps required for such a solution and the implications for 
LHC computing as well as for LHC public outreach and for participation by scientists 
from developing regions in LHC research.  

1.  Citizen Cyberscience 
For centuries, citizen scientists have played an important role in many areas of science. As hands-on 
experimenters with their own equipment, amateur astronomers, archaeologists, botanists and 
ornithologists have made many original and important discoveries.  

1.1 Volunteer Computing 
In recent years, citizens have been able to contribute computer processing power from their private PCs, 
laptops and even game stations. Such volunteer computing today provides many Teraflops to more 
than 100 projects in a range of sciences as well as for tasks such as image rendering. Some of the most 
famous projects, such as Einstein@home (gravitational wave detection), Folding@home (protein 
folding) and ClimatePrediction.net (large-scale modelling of Earth’s climate) routinely harvest the 
computing resources of tens of thousands of volunteers, many of these providing several computers. 
 
One of the first examples of a large volunteer computing project was SETI@home [1] at the Berkeley 
Space Sciences Laboratory. This attracted so much volunteer interest and CPU power that its inventors, 
led by David Anderson, went on to develop open source middleware (the Berkeley Open Infrastructure 
for Network Computing: BOINC [2]) which enables scientists easily to set up projects which distribute 
their scientific software for execution by volunteers. It is estimated that more than 2 million volunteers 
with more than 5 million processors have been active on BOINC projects.  

1.2 Volunteer Thinking and m-Science 
Apart from simply volunteering CPU power, citizens are also able to volunteer their visual and 
intellectual skills to deserving projects, for example by helping online to collect, digitize, classify and 
annotate scientific data. An example of such volunteer thinking is the project GalaxyZoo, where 
volunteers classify galaxy images taken by the Sloan Digital Sky Survey or Hubble Telescope, using a 
simple web interface. A novel type of galactic object, called Hanny’s Voorwerp, was discovered by a 
participant in this project, Dutch school teacher Hanny van Arkel, vividly illustrating that in the Internet 
age, citizen science still has the potential to produce significant results [20].  

 
Mobile devices provide yet another means for amateurs to contribute to science, by actively 
contributing scientific data from the field. The project EpiCollect is an example of such m-Science used 
for mobile data collection in epidemiology as well as for other scientific tasks [21]. 
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1.3 The Citizen Cyberscience Centre

  

Volunteer Computing, Volunteer Thinking and m-Science represent three facets of an emerging 
technological and social trend which we call Citizen Cyberscience. Essentially, this is the pursuit of 
citizen science with the help of the Internet and the increasingly sophisticated consumer computing 
devices that are connected to it.  

 
Citizen Cyberscience can provide researchers with unprecedented amounts of computing power as well 
as an army of online research assistants, at practically no cost. Projects that routinely exploit tens of 
thousands of volunteer computers would cost tens of millions of dollars to set up if they had to rely on 
their own hardware. Contributions of volunteer thinkers and data collectors may be even more valuable. 
 
Yet perhaps the biggest opportunity of all is for science in the developing world. Here scientists often 
have budget constraints that preclude investments in even modest computing clusters. They are also 
facing the challenge of analyzing large amounts of data with limited human resources. Finally, data 
collection from the field with mobile devices is a burgeoning opportunity in developing regions, where 
mobile devices are widespread and often provide the only available connection to the Internet.  
 
Based on two pilot projects to promote citizen cyberscience in developing regions, called Africa@home 
and Asia@home, the Citizen Cyberscience Centre [19] was established in 2009 with CERN, the 
University of Geneva, and the United Nations Institute for Training and Research (UNITAR) as 
founding partners, and a number of universities worldwide with activities in citizen cyberscience as 
associated partners. The Centre is currently sponsored by IBM’s World Community Grid initiative, an 
award from the HP Labs Innovation Research Program, and a Fellowship from the Shuttleworth 
Foundation in South Africa. 

2.  Grid vs. Cloud Computing 
A conventional means of supplying large amounts of computing power to major research projects has 
involved the development of "research Grids". These are essentially distributed federations of large 
computing clusters belonging to research institutes and operated by them.  
 
An alternative for smaller research groups or institutes has been their own installation and support of 
dedicated local computing clusters with all the operational and financial overheads that this entails. 
Considerable work in this latter area has been carried out by the European Desktop Grid Initiative 
(EDGI), including the study of BOINC-Grid gateways to permit the use of volunteer computers as part 
of the combined Grid and desktop grid ensemble. 
 
 A recent change to this “Grid” model has been the emergence of computing clouds. These leverage the 
installed capacity of very large computing centers by offering attractive rented chunks of processor 
power and storage to consumers over the Internet. Providers like Amazon, Google, IBM and Microsoft 
benefit from the economies of scale associated with their highly optimized installations, and customers 
benefit by simply using resources when it suits them and incurring no overheads or wasted cycles when 
they are unused. Our present approach allows volunteer computers to become part of this paradigm. 
 
A key technology that has enabled such cloud development is virtualization. This permits the logical 
separation of an underlying physical computing fabric, installed in a computing centre, from the users' 
view of the computing resources provided by this fabric. In particular, underlying platform 
characteristics such as operating system, I/O connectivity, memory and CPU configuration can be 
abstracted into virtual machines of chosen standard type(s) which can then be further custom-
configured for (or by) the end-users for the period of their resource occupation. For an example of such 
a service, see details [12] of the Amazon Web Services Elastic Compute Cloud (EC2) and Simple 
Storage Service (S3). 

3.  Volunteer Computing and BOINC 
The BOINC model is based on a project server which sends out jobs on behalf of a BOINC project to 
all volunteer client nodes which have attached to the project to contribute to its computing tasks. The 
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project server receives back any results for the submitted jobs, validates them and deals with issues of 
client down-time or unreliability. There is also a comprehensive system of project message boards to 
allow communication between volunteers and project staff, and “credit” is awarded to volunteers to 
encourage their collaboration. This credit is not material or financial, but nevertheless represents a 
major incentive to some volunteer communities, who form teams and compete actively for the 
maximum credit amount.  
 
Until recently, each BOINC project required considerable effort to set up, first to port its computing 
application to a wide variety of BOINC client platforms (typically Windows, but with some Linux and 
MacOSX systems), and then to develop suitable job submission scripts to manage the flow of work 
between the project scientists and their BOINC server(s).  

3.1 The LHC@home project 
An example of such a traditional BOINC project is LHC@home. One of the very first such projects to 
be set up, it was launched in 2005 as part of CERN’s 50th anniversary celebrations and attracted many 
volunteers and much media attention. The application is a detailed simulation of the colliding beam 
configuration in the LHC, with the aim of finding stable zones in phase space to avoid beam loss and 
aid the machine operation. The code (“SIXTRACK”) was Fortran-based and was ported to Windows 
and Linux in the classic way, incorporating calls to the BOINC API library and recompiling and 
relinking the source code to produce BOINC executables for each client platform. A sophisticated 
LHC@home screen saver was also developed, but later it was realized that this consumed appreciable 
client resources and sophisticated volunteers would turn it off, thereby completing their work units 
faster and gaining more credit. Some 60,000 users with about 100,000 PC’s have been active 
LHC@home volunteers since 2005. 
 
After seeing the interest generated by the SIXTRACK application, the question was raised whether 
CERN could benefit from BOINC to assist with its LHC physics research programme as well as for 
accelerator design. The rest of this paper discusses the solutions found for this challenging issue. 
 

4.   “Real” LHC physics with BOINC: the problems involved 
Previously, we saw the need to port and maintain applications on all popular volunteer platforms, 
particularly Windows, in order to have a sufficient pool of client machines for a demanding project. But

 

in a discipline like High Energy Physics, almost all code is developed under Linux (in fact for the LHC 
under one particular brand of Linux, Scientific Linux), and porting to Windows or even to other Linux 
flavors, is extremely arduous. In fact, the quantity of code involved and the frequency of code changes 
makes porting impractical and working physicists strongly resist any such suggestion. Each experiment 
has a huge codebase with a lot of third-party dependencies, and the individual LHC collaborations have 
different coding environments. Code rebuilds are typically done weekly and sometimes daily. 

4.1 Virtualization as a possible solution 
By using virtualization, the entire application environment including the operating system, code, 
libraries and support utilities can be incorporated into a virtual image, which can then be executed 
under a suitable virtual hypervisor installed on the client machines, ensuring complete compatibility of 
the applications with the developers' own versions. This solves the basic “porting problem” but leaves 
us with another problem: the “image size problem”. The size of the virtual image produced by 
encapsulating the whole environment of an LHC physics experiment is of the order of 10 Gigabytes. 
Even if we accept the overhead of downloading this image initially to a prospective client node, the 
prospect of rewriting it every time any changes are made in the codebase or libraries becomes 
impractical. 

4.2 BOINC job management 
Another problem which arises when using standard BOINC for large scale LHC physics computing is 
related to the BOINC method of running and managing a job load. Each “job” (i.e. from a physicist’s 
point of view, each physics event or group of events) gets mapped to a BOINC “work-unit”, which in 
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turn is split into several “results” and sent out to independent volunteer clients for solution. When two 
or more results for a single work-unit are received and “validated”, the work-unit is considered 
complete, the volunteers receive their credits, and only then can the project’s job database be updated. 
Each physics experiment has to write scripts to feed jobs from their job production system into the 
BOINC project server, and wait until this process is complete for each job. As the actual handling of 
results is quite uncertain, and as BOINC does not provide in-depth monitoring tools, it is not possible 
for a physicist to track the progress of any particular set of jobs, change their priority or cancel them, or 
even estimate precisely when a set of jobs will be completed. This is an unacceptable situation for them. 

4.3 LHC experiment job production systems 
However, we observed that the LHC experiments have developed their own job submission and 
scheduling systems (e.g. [5], [9]); these send “pilot job agents” into a Grid or Cloud fabric which are 
used to work out the best scheduling strategies to use at any given time and which then “pull in” the real 
jobs for execution. These systems also account for failures of jobs or computer nodes, considering the 
fabric as an unreliable resource - this corresponds perfectly to the situation with a collection of BOINC 
resources which may appear, disappear or run intermittently. These Pilot-job schedulers also deal with 
job monitoring and management issues, as well as job validation (thus avoiding the need for redundant 
result handling in BOINC). 
 
So we decided to interface to the LHC experiments’ own Pilot-job systems, and chose to use a generic 
interface called Co-Pilot [7] which offers a gateway to these (differing) Pilot-job implementations. 
Details are given in the following sections of this paper. 

5.  CernVM 
We now describe how detailed solutions to the above problems (of image size and of job interfacing via 
the CoPilot sytem) have been developed recently at CERN. 
 
In 2008, a CERN R&D project called CernVM [4] was launched by Predrag Buncic and collaborators 
in the PH Department, offering a general solution to the problem of virtual image management for 
physics computing at the LHC experiments. As three separate papers have been presented at this 
conference on CernVM itself [16] and its associated systems: the CernVM File System [17] and the Co-
Pilot Cloud-Grid interface [18], we will only give summary details of these systems here, even though 
they play key roles in the success of our work. 

5.1 Image size optimization 
Instead of loading each running virtual machine with a full image containing all the code and libraries 
for an experiment's applications, only a basic "thin appliance" of about 200 MB is loaded initially, and 
further image increments are demand-loaded as needed by any given application and choice of LHC 
experiment. Image updates after code changes are also made incrementally via the CernVM File 
System and Repository Service which keep up to date versions of all image modules for each supported 
LHC experiment. The resulting working images are typically under 1 GB in size and are cached by the 
virtual machines, minimizing access to the CernVM repository until changes appear in the physics code 
or a new type of application needs to be executed. Not only has CernVM solved the problems of virtual 
image size and of image updating, but it also satisfies the physicists' requirement of requiring minimal 
changes to their working habits. In effect, with only trivial extensions to their existing code building 
scripts, they obtain a complete set of virtual image modules in the CernVM repository at the same time 
as they build their normal set of Scientific Linux executables. See Figure 1 for the system architecture. 

5.2 Co-Pilot subsystem 
Figure 2 shows the Co-Pilot system architecture. Note that the “untrusted” BOINC systems can 
communicate only with the intermediate Co-Pilot services and not directly with the experiments’ Grid 
services which require Grid certification for full access. On each experiment's side of the gateway, a 
software package called a "Co-Pilot Adapter" is required. ALICE/AlieN received the first such adapter 
and so early testing of our system used ALICE jobs, but an adapter for ATLAS/PanDA was also 
recently written and tested, as well as an adapter for Monte Carlo jobs run for a group of theoreticians 
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led by Peter Skands in the CERN Physics Department. Adapters will also be produced for the CMS and 
LHCb experiments in order to complete the system.

 
 

6.  Connecting BOINC and CernVM 

6.1 Basic Virtual Machine support for BOINC 
To accommodate Virtual Machine technology into BOINC, we use a method which requires essentially 
no changes to the standard BOINC client or server infrastructure. This is based on the "wrapper" 
technique used for porting "legacy applications" to BOINC (i.e. those whose source is not available and 
which can therefore not be ported in the usual way using the BOINC API). The standard BOINC 
Wrapper [3] simply forked and executed the binary of a legacy application, then communicated with the 
BOINC core client code on behalf of the running application process, all running in the volunteer host 
machine. To begin our work with virtualization under BOINC (starting in 2006), we simply made 
minimal modifications to the standard Wrapper code so that it would boot a virtual machine under a 
preloaded hypervisor and then run a virtual image instead of a host executable. This yielded only 
primitive BOINC client functionality but was enough to show that we could run virtualized applications 
in this way. See the paper by Daniel Lombrana Gonzalez [8] for a detailed report of this work. Two 
further early prototypes were made independently by David Weir and Kevin Reed of IBM, reported in 
[11], using modified BOINC Wrapper programs and the VMware Server hypervisor.  

   6.2 Interfacing to VM hypervisors and VM processes  
With the advent of CernVM in 2008, we realized that a solution for our remaining problems now 
existed, and work was begun to prepare for the general support of virtual hypervisors in BOINC, 
capable of running CernVM or other virtual images as guest processes under control of the BOINC core 
client in the host machine. To achieve this, we decided to exploit hypervisors such as VMware and 
VirtualBox which exposed full-function APIs to start and stop virtual machines, load and save running 
images, and communicate with the guest processes in the VMs.  
 
As a first step, a general-purpose "VMController" service layer was written by David Garcia Quintas 
[6] which allows asynchronous communication to occur among host and guest entities, and files and 
other process information to be exchanged between the host and guest layers. Generic support for 
various hypervisors was incorporated in this layer, including VMWare, VirtualBox and others offering 
a suitable external API. In fact, VMController is not restricted to supporting BOINC clients but allows 
full control of guest virtual machine(s) by any host process via a convenient XML-RPC interface. The 
VMController code is written in Python for cross platform compatibility. It is currently being extended 
and packaged by Rohit Yadav [14] as part of a university thesis project. 
 
At the same time, a completely new BOINC wrapper called "VMwrapper" was written by Jarno Rantala 
[10] using the VMController services. VMwrapper is also written in Python, using BOINC API Python 
bindings written by David Weir [13]. To configure the new BOINC-VM applications, VMwrapper 
supports XML files with formats based on standard BOINC job.xml files but with additional tags to 
support the new functions associated with the VM and guest process control.  (In fact, VMwrapper is 
also functionally back-compatible with the standard BOINC Wrapper: if provided with a standard 
BOINC job.xml file it will run the application in the host processor just as before). 

   6.3 Interfacing to CernVM 
Although the above Python-based software offered the most general capabilities for supporting a wide 
range of VM based systems within BOINC, its use was in fact “overkill” for the CernVM application 
that we will describe below. We also encountered packaging problems when building installers that 
would work on the wide variety of BOINC clients we wanted to support (various Windows and Linux 
flavours  as well as MacOSX). So to begin alpha system tests as soon as possible, Jie Wu [15] wrote a 
stripped-down “CernVM-Wrapper” in C++ with the minimum necessary functionality, namely to 
configure, launch and control a CernVM virtual machine under the VirtualBox hypervisor, and 
communicate on its behalf with the BOINC core client, including the function of allocating credit for 
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the volunteer based on resource usage by the virtual machine. Porting this C++ wrapper to Windows, 
Linux and MacOSX platforms was much simpler than dealing with Python subsystems.

 

 

7.  The resulting system: BOINC-CernVM 
The resulting BOINC-CernVM system is now being maintained at CERN with the support of the 
Citizen Cyberscience Centre. It works as follows: 
 

• the BOINC volunteer first pre-installs the open source hypervisor VirtualBox on his system 
(we plan to avoid the need for this step in the future). 

• The volunteer then attaches to the BOINC-VM project server in the standard way, using 
unmodified standard BOINC client software. 

• The volunteer receives a single “work unit” containing two files: the CernVM-Wrapper (the 
executable), and the standard CernVM virtual image containing the Thin Appliance plus the 
Co-Pilot agent. 

• The CernVM-Wrapper is executed: it configures, loads and runs the CernVM image in a guest 
VM under VirtualBox. From this point on, the Wrapper task simply behaves like a long-
running BOINC host application but does no serious computing. 

• Inside the guest VM, CernVM runs in a standard way, including a connection to the CernVM 
file system repository. The Co-Pilot agent, started at CernVM boot time, locates the remote job 
queue corresponding to the desired LHC experiment’s Pilot Job scheduler, receives jobs  to be 
executed in the CernVM environment, and returns the results. 

• The CernVM-Wrapper regularly measures the total CPU resources used by the virtual 
machine, and requests the appropriate credit from the BOINC project server. 

• During the first job of a series, the CernVM running image is automatically expanded by the 
addition of any missing libraries or other modules needed by the specific job environment. 
Later jobs do not require this phase as all image changes are cached in the guest VM. 

• The job flow is entirely under the control of the external Pilot Job scheduler; no BOINC result 
scheduling is done. In fact the BOINC volunteer PC only sees a very long-running task which 
grants credit regularly but does not terminate, unless the volunteer suspends or terminates it. 
(In a later stage, we plan to inform the BOINC volunteer about job activity within the VM, but 
this is merely for interest and is not an essential feature). 

• The Pilot Job scheduler simply sees an executing CernVM node of a standard type which 
accepts and returns jobs, perhaps less reliably than other nodes, but no different in principle.  

• With many BOINC clients attached, the Pilot Scheduler sees a Cloud of CernVM nodes, 
looking the same as a group of CernVM nodes on Amazon EC2 or other virtual fabrics. 

 
The BOINC-CernVM system architecture is shown in Figure 1 below, and the BOINC-CoPilot 
Volunteer Cloud architecture is shown in Figure 2. 
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Figure 1:  BOINC – CernVM System Architecture 
  

 
 

Figure 2:   BOINC + CernVM + Co-Pilot Volunteer Cloud Architecture 
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8.  

A Volunteer Cloud for LHC physics

 

In effect we have been able to set up a BOINC computing configuration which simply appears as an 
additional cloud resource for the LHC experiments, in exactly the same way as EC2 and other cloud 
resources have been interfaced to them. All the code to support the Co-Pilot agents, and thus to 
communicate with the LHC pilot job schedulers via the Co-Pilot adapters, is included in the CernVM 
images that we use. Thus no changes are needed to BOINC client or server code, or to any LHC 
experiment code or procedures as long as they use CernVM. 
 
This resulting "volunteer cloud" for LHC computing is about to be beta-tested, initially for the CERN 
Theoretical Physics Group running Monte Carlo QCD event generation, and then for the LHC 
experiment collaborations for running simulation, event generation, and perhaps some reconstruction, 
with an emphasis on CPU intensive rather than data intensive problems. 

 
8.1 Implications for LHC physics 
While caution is required when extrapolating from the current results, it is worth noting that the total 
processing requirements for LHC computing have been estimated at 100k CPU’s, and this number will 
no doubt grow with the increasing sophistication of the simulation and analysis software. The costs 
involved in running individual data centres for the LHC, including hardware, electricity and manpower, 
form a significant part of the budgets of CERN and of many of the other major institutional partners 
contributing to the LHC. Any way to reduce these costs ought to be welcome, especially in the current 
austere budget climate for HEP.   
 
So farming out a fraction of the LHC physics simulation to volunteer resources can be an attractive 
option. And not only is it a budget saving for the HEP community, but looked at globally, volunteer 
computing is an energetically more efficient approach, especially if – as is common these days – 
volunteers are encouraged to run BOINC only in the background when they are otherwise active on 
their computers. In this mode, the extra power consumed is often only a few percent of the “ON” power 
of a regular PC or laptop.  
 
The results we have outlined in this paper demonstrate that, thanks to virtualization, exploiting 
volunteer computing for meaningful LHC physics is now technically feasible. Just as important for a 
successful uptake of this technology, though, we have demonstrated that it can be provided to the LHC 
physicists in a form essentially identical to other computing resources, therefore requiring no extra 
effort on their part to adapt to it, through the concept of “volunteer clouds”. 
 
Finally, it is clear that many other scientific communities could benefit from the same approach we 
have discussed above in the LHC context. Many of them may have less demanding requirements than 
those of the LHC physicists, so they will perhaps not need all the power of the CernVM / Co-Pilot 
approach to enjoy access to volunteer cloud computing.  
 
8.2 Implications for LHC public outreach and international participation 
During the six years that LHC@home has been operating, and particularly since the LHC itself has 
been generating data, a recurring question from volunteers has been whether they could participate 
more directly in LHC physics computing. Indeed, the volunteer community includes many sophisticated 
citizen cyberscientists who are very well informed about the LHC and the physics it is attempting to 
unravel, and are keen to be more closely involved in that process.  
 
The enormous and sustained interest of international media for the LHC should provide a huge base of 
support for a future expansion of the LHC@home volunteer base. So there is no reason to suppose that 
such an expansion would saturate volunteer contribution. Of course, as other volunteer computing 
projects can attest, managing the volunteer community represents a non-negligible amount of effort. 
But since public awareness and interest in fundamental science is of great value to the HEP community, 
as it translates into political support for fundamental research, this effort would seem a small price to 
pay for both the computing and public outreach benefits it generates. 
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There are many directions that volunteer

-

based LHC computing could go in future. These range from 
adapting new releases of software from the various LHC experiments for use on volunteer resources 
such as GPUs and game stations, to exploring possible uses of volunteer thinking in LHC data analysis. 
These options represent a series of projects that would be well suited for scientists with limited 
resources wishing to establish themselves in the LHC community.  
 
Through the Citizen Cyberscience Centre, it is our goal to encourage and facilitate such participation in 
the future expansion of the LHC@home project. In 2011, we are planning a series of workshops for 
scientists in India, China, Brazil and South Africa, with the support of the Shuttleworth Foundation, 
introducing Citizen Cyberscience to communities that are unfamiliar with it, and using LHC@home as 
a prominent illustration of how to get involved. 
 
There are over a billion PCs on the planet now and some 5 billion mobile devices. Most important of 
all, there are nearly 7 billion people, a rapidly increasing fraction of whom have Internet access. 
Currently, the sum total of active citizen cyberscientists in any form is probably less than 1 per mil of 
the global population, and the ones currently involved in LHC@home represent about 1% of that.  
 
The opportunity to engage more citizen cyberscientists in LHC research beckons. And if the HEP 
community can seize that opportunity, it is our conviction that HEP will acquire a significantly 
enhanced potential for scientific discovery, through public participation in science.  
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